3.3.81 \(\int \frac {\sqrt [3]{e \sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx\) [281]

3.3.81.1 Optimal result
3.3.81.2 Mathematica [B] (warning: unable to verify)
3.3.81.3 Rubi [A] (verified)
3.3.81.4 Maple [F]
3.3.81.5 Fricas [F(-1)]
3.3.81.6 Sympy [F]
3.3.81.7 Maxima [F]
3.3.81.8 Giac [F]
3.3.81.9 Mupad [F(-1)]

3.3.81.1 Optimal result

Integrand size = 27, antiderivative size = 76 \[ \int \frac {\sqrt [3]{e \sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx=-\frac {3 \operatorname {AppellF1}\left (\frac {1}{3},\frac {1}{2},1,\frac {4}{3},\sec (c+d x),-\sec (c+d x)\right ) \sqrt [3]{e \sec (c+d x)} \tan (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {a+a \sec (c+d x)}} \]

output
-3*AppellF1(1/3,1,1/2,4/3,-sec(d*x+c),sec(d*x+c))*(e*sec(d*x+c))^(1/3)*tan 
(d*x+c)/d/(1-sec(d*x+c))^(1/2)/(a+a*sec(d*x+c))^(1/2)
 
3.3.81.2 Mathematica [B] (warning: unable to verify)

Leaf count is larger than twice the leaf count of optimal. \(749\) vs. \(2(76)=152\).

Time = 7.80 (sec) , antiderivative size = 749, normalized size of antiderivative = 9.86 \[ \int \frac {\sqrt [3]{e \sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx=\frac {720 e \operatorname {AppellF1}\left (\frac {1}{2},-\frac {1}{6},\frac {2}{3},\frac {3}{2},\tan ^2\left (\frac {1}{2} (c+d x)\right ),-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \cos \left (\frac {1}{2} (c+d x)\right ) (1+\cos (c+d x))^2 \sin \left (\frac {1}{2} (c+d x)\right ) \left (9 \operatorname {AppellF1}\left (\frac {1}{2},-\frac {1}{6},\frac {2}{3},\frac {3}{2},\tan ^2\left (\frac {1}{2} (c+d x)\right ),-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )-\left (4 \operatorname {AppellF1}\left (\frac {3}{2},-\frac {1}{6},\frac {5}{3},\frac {5}{2},\tan ^2\left (\frac {1}{2} (c+d x)\right ),-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )+\operatorname {AppellF1}\left (\frac {3}{2},\frac {5}{6},\frac {2}{3},\frac {5}{2},\tan ^2\left (\frac {1}{2} (c+d x)\right ),-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )\right ) \tan ^2\left (\frac {1}{2} (c+d x)\right )\right )}{d (e \sec (c+d x))^{2/3} \sqrt {a (1+\sec (c+d x))} \left (4320 \operatorname {AppellF1}\left (\frac {1}{2},-\frac {1}{6},\frac {2}{3},\frac {3}{2},\tan ^2\left (\frac {1}{2} (c+d x)\right ),-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )^2 \cos ^6\left (\frac {1}{2} (c+d x)\right ) (-1+4 \cos (c+d x))+160 \left (4 \operatorname {AppellF1}\left (\frac {3}{2},-\frac {1}{6},\frac {5}{3},\frac {5}{2},\tan ^2\left (\frac {1}{2} (c+d x)\right ),-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )+\operatorname {AppellF1}\left (\frac {3}{2},\frac {5}{6},\frac {2}{3},\frac {5}{2},\tan ^2\left (\frac {1}{2} (c+d x)\right ),-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )\right )^2 \cos (c+d x) \sin ^4\left (\frac {1}{2} (c+d x)\right )+12 \operatorname {AppellF1}\left (\frac {1}{2},-\frac {1}{6},\frac {2}{3},\frac {3}{2},\tan ^2\left (\frac {1}{2} (c+d x)\right ),-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) \sin ^2\left (\frac {1}{2} (c+d x)\right ) \left (20 \operatorname {AppellF1}\left (\frac {3}{2},-\frac {1}{6},\frac {5}{3},\frac {5}{2},\tan ^2\left (\frac {1}{2} (c+d x)\right ),-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) (7+14 \cos (c+d x)+5 \cos (2 (c+d x))-2 \cos (3 (c+d x)))+5 \operatorname {AppellF1}\left (\frac {3}{2},\frac {5}{6},\frac {2}{3},\frac {5}{2},\tan ^2\left (\frac {1}{2} (c+d x)\right ),-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right ) (7+14 \cos (c+d x)+5 \cos (2 (c+d x))-2 \cos (3 (c+d x)))-24 \left (40 \operatorname {AppellF1}\left (\frac {5}{2},-\frac {1}{6},\frac {8}{3},\frac {7}{2},\tan ^2\left (\frac {1}{2} (c+d x)\right ),-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )+8 \operatorname {AppellF1}\left (\frac {5}{2},\frac {5}{6},\frac {5}{3},\frac {7}{2},\tan ^2\left (\frac {1}{2} (c+d x)\right ),-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )-5 \operatorname {AppellF1}\left (\frac {5}{2},\frac {11}{6},\frac {2}{3},\frac {7}{2},\tan ^2\left (\frac {1}{2} (c+d x)\right ),-\tan ^2\left (\frac {1}{2} (c+d x)\right )\right )\right ) \cos (c+d x) \sin ^2\left (\frac {1}{2} (c+d x)\right )\right )\right )} \]

input
Integrate[(e*Sec[c + d*x])^(1/3)/Sqrt[a + a*Sec[c + d*x]],x]
 
output
(720*e*AppellF1[1/2, -1/6, 2/3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2] 
^2]*Cos[(c + d*x)/2]*(1 + Cos[c + d*x])^2*Sin[(c + d*x)/2]*(9*AppellF1[1/2 
, -1/6, 2/3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] - (4*AppellF1[3 
/2, -1/6, 5/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + AppellF1[3/ 
2, 5/6, 2/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])*Tan[(c + d*x)/ 
2]^2))/(d*(e*Sec[c + d*x])^(2/3)*Sqrt[a*(1 + Sec[c + d*x])]*(4320*AppellF1 
[1/2, -1/6, 2/3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]^2*Cos[(c + 
d*x)/2]^6*(-1 + 4*Cos[c + d*x]) + 160*(4*AppellF1[3/2, -1/6, 5/3, 5/2, Tan 
[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2] + AppellF1[3/2, 5/6, 2/3, 5/2, Tan[( 
c + d*x)/2]^2, -Tan[(c + d*x)/2]^2])^2*Cos[c + d*x]*Sin[(c + d*x)/2]^4 + 1 
2*AppellF1[1/2, -1/6, 2/3, 3/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2]^2]*S 
in[(c + d*x)/2]^2*(20*AppellF1[3/2, -1/6, 5/3, 5/2, Tan[(c + d*x)/2]^2, -T 
an[(c + d*x)/2]^2]*(7 + 14*Cos[c + d*x] + 5*Cos[2*(c + d*x)] - 2*Cos[3*(c 
+ d*x)]) + 5*AppellF1[3/2, 5/6, 2/3, 5/2, Tan[(c + d*x)/2]^2, -Tan[(c + d* 
x)/2]^2]*(7 + 14*Cos[c + d*x] + 5*Cos[2*(c + d*x)] - 2*Cos[3*(c + d*x)]) - 
 24*(40*AppellF1[5/2, -1/6, 8/3, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2 
]^2] + 8*AppellF1[5/2, 5/6, 5/3, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/2 
]^2] - 5*AppellF1[5/2, 11/6, 2/3, 7/2, Tan[(c + d*x)/2]^2, -Tan[(c + d*x)/ 
2]^2])*Cos[c + d*x]*Sin[(c + d*x)/2]^2)))
 
3.3.81.3 Rubi [A] (verified)

Time = 0.43 (sec) , antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {3042, 4315, 3042, 4314, 148, 27, 936}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt [3]{e \sec (c+d x)}}{\sqrt {a \sec (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sqrt [3]{e \csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {a \csc \left (c+d x+\frac {\pi }{2}\right )+a}}dx\)

\(\Big \downarrow \) 4315

\(\displaystyle \frac {\sqrt {\sec (c+d x)+1} \int \frac {\sqrt [3]{e \sec (c+d x)}}{\sqrt {\sec (c+d x)+1}}dx}{\sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\sqrt {\sec (c+d x)+1} \int \frac {\sqrt [3]{e \csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )+1}}dx}{\sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 4314

\(\displaystyle -\frac {e \tan (c+d x) \int \frac {1}{\sqrt {1-\sec (c+d x)} (e \sec (c+d x))^{2/3} (\sec (c+d x)+1)}d\sec (c+d x)}{d \sqrt {1-\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 148

\(\displaystyle -\frac {3 \tan (c+d x) \int \frac {e}{\sqrt {1-\sec (c+d x)} (\sec (c+d x) e+e)}d\sqrt [3]{e \sec (c+d x)}}{d \sqrt {1-\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {3 e \tan (c+d x) \int \frac {1}{\sqrt {1-\sec (c+d x)} (\sec (c+d x) e+e)}d\sqrt [3]{e \sec (c+d x)}}{d \sqrt {1-\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\)

\(\Big \downarrow \) 936

\(\displaystyle -\frac {3 \tan (c+d x) \operatorname {AppellF1}\left (\frac {1}{3},1,\frac {1}{2},\frac {4}{3},-\sec (c+d x),\sec (c+d x)\right ) \sqrt [3]{e \sec (c+d x)}}{d \sqrt {1-\sec (c+d x)} \sqrt {a \sec (c+d x)+a}}\)

input
Int[(e*Sec[c + d*x])^(1/3)/Sqrt[a + a*Sec[c + d*x]],x]
 
output
(-3*AppellF1[1/3, 1, 1/2, 4/3, -Sec[c + d*x], Sec[c + d*x]]*(e*Sec[c + d*x 
])^(1/3)*Tan[c + d*x])/(d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a + a*Sec[c + d*x]])
 

3.3.81.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 148
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))^(p_.), 
x_] :> With[{k = Denominator[m]}, Simp[k/b   Subst[Int[x^(k*(m + 1) - 1)*(c 
 + d*(x^k/b))^n*(e + f*(x^k/b))^p, x], x, (b*x)^(1/k)], x]] /; FreeQ[{b, c, 
 d, e, f, n, p}, x] && FractionQ[m] && IntegerQ[p]
 

rule 936
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] 
:> Simp[a^p*c^q*x*AppellF1[1/n, -p, -q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c) 
], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] 
 && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4314
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_), x_Symbol] :> Simp[a^2*d*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x 
]]*Sqrt[a - b*Csc[e + f*x]]))   Subst[Int[(d*x)^(n - 1)*((a + b*x)^(m - 1/2 
)/Sqrt[a - b*x]), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, 
x] && EqQ[a^2 - b^2, 0] &&  !IntegerQ[m] && GtQ[a, 0]
 

rule 4315
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + 
(a_))^(m_), x_Symbol] :> Simp[a^IntPart[m]*((a + b*Csc[e + f*x])^FracPart[m 
]/(1 + (b/a)*Csc[e + f*x])^FracPart[m])   Int[(1 + (b/a)*Csc[e + f*x])^m*(d 
*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^ 
2, 0] &&  !IntegerQ[m] &&  !GtQ[a, 0]
 
3.3.81.4 Maple [F]

\[\int \frac {\left (e \sec \left (d x +c \right )\right )^{\frac {1}{3}}}{\sqrt {a +a \sec \left (d x +c \right )}}d x\]

input
int((e*sec(d*x+c))^(1/3)/(a+a*sec(d*x+c))^(1/2),x)
 
output
int((e*sec(d*x+c))^(1/3)/(a+a*sec(d*x+c))^(1/2),x)
 
3.3.81.5 Fricas [F(-1)]

Timed out. \[ \int \frac {\sqrt [3]{e \sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx=\text {Timed out} \]

input
integrate((e*sec(d*x+c))^(1/3)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas 
")
 
output
Timed out
 
3.3.81.6 Sympy [F]

\[ \int \frac {\sqrt [3]{e \sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {\sqrt [3]{e \sec {\left (c + d x \right )}}}{\sqrt {a \left (\sec {\left (c + d x \right )} + 1\right )}}\, dx \]

input
integrate((e*sec(d*x+c))**(1/3)/(a+a*sec(d*x+c))**(1/2),x)
 
output
Integral((e*sec(c + d*x))**(1/3)/sqrt(a*(sec(c + d*x) + 1)), x)
 
3.3.81.7 Maxima [F]

\[ \int \frac {\sqrt [3]{e \sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {1}{3}}}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate((e*sec(d*x+c))^(1/3)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima 
")
 
output
integrate((e*sec(d*x + c))^(1/3)/sqrt(a*sec(d*x + c) + a), x)
 
3.3.81.8 Giac [F]

\[ \int \frac {\sqrt [3]{e \sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx=\int { \frac {\left (e \sec \left (d x + c\right )\right )^{\frac {1}{3}}}{\sqrt {a \sec \left (d x + c\right ) + a}} \,d x } \]

input
integrate((e*sec(d*x+c))^(1/3)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate((e*sec(d*x + c))^(1/3)/sqrt(a*sec(d*x + c) + a), x)
 
3.3.81.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt [3]{e \sec (c+d x)}}{\sqrt {a+a \sec (c+d x)}} \, dx=\int \frac {{\left (\frac {e}{\cos \left (c+d\,x\right )}\right )}^{1/3}}{\sqrt {a+\frac {a}{\cos \left (c+d\,x\right )}}} \,d x \]

input
int((e/cos(c + d*x))^(1/3)/(a + a/cos(c + d*x))^(1/2),x)
 
output
int((e/cos(c + d*x))^(1/3)/(a + a/cos(c + d*x))^(1/2), x)